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Summary 
 
A combined method is proposed for seismic events 
detection, signal enhancement and automatic P-phase 
picking. This method is comprised by a Chi-squared based 
test statistical test for the event detection, filtering in the S-
transform domain, for denoising and an automatic picker 
based on the Kurtosis criterion. The performance of the 
method is tested and evaluated on both synthetic and real 
data.  
 
Introduction 
 
During a passive seismic investigation, either high 
resolution tomography survey or hydrofracturing we use 
small magintude earthquakes. Most of them have small 
magnitudes and often are hard to detect since they can be 
corrupted by noise.  
For microfracture monitoring in addition to the noisy 
borehole environment most hydrofracturing events 
typically radiate smaller P –waves than S- waves therefor, 
identification of the weak p-wave arrivals is important for 
locating the microearthquakes and the accuracy of event 
azimuth relies mainly on the P-wave vector. 
For high resolution passive seismic tomography (PST) 
applications, we need as many as possible small magnitude 
events which can be characterised as point sources. These 
small events, especially if acquired in urban areas are often 
strongly affected by noise, so we also require procedures 
that allow a reliable first arrival picking, without losing 
important information. 
 
Theory and method 
 
Chi-squared based test statistic for event detection 
Chi-squared goodness-of-fit test (referred also as Karl 
Pearson’s test) is a special type of hypothesis test that is 
often used to test the equivalence of a probability density 
function of sampled data with a theoretical one. For the 
seismic event detection we propose a new parameter free 
Chi-Square based statistic under a sequential hypothesis 
testing framework. Let us consider a set of N independent 
observations from a random variable x with a probability 
density function p(x). Let the N observations are grouped 
into K intervals, called class intervals or bins, which 
together form a frequency histogram. The number of 
observations falling within each class interval is called the 
observed frequency (Oi), and the number of the 
observations that are expected to fall within each bin is 
called the expected frequency (Ei). To measure the total 

discrepancy for all class intervals we introduce the 
following sum (Bendat and Piersol, 1986): 
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The fact, that: a) the distribution of the seismic noise is 
unknown b) specific bins’ selection could falsely result in 
zero estimations, a fact that would drive the classical 
Pearson’s statistic to infinity and c) the noise process 
consists of segments of the record, that are not independent 
and identically distributed sets of observations, prompted 
us to apply a modified Pearson’s test (Lois et al. 2010). We 
estimate the expected frequencies from a properly selected 
noise segment of the record. Instead of equal length bins 
we can use equal number of observations per bin and 
instead of the frequencies Oi and Ei we use the 

corresponding lengths of the bins
E
i

O
i LL ˆ, .These are 

obtained from the equiprobable partitioning of the support 
of the observed and the estimated theoretical pdfs 
respectively. Thus we introduce the finally proposed 
statistical test for the event detection: 
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The proposed modification of the Pearson’s statistical test 

does not follow a
2

1−KX  distribution and in order to solve 

the event detection problem we follow a thresholding type 
hypothesis testing framework using the Otsu’s method 
(Otsu, 1978) that provides an optimal separation between 
the noise distribution and the distribution of the samples 
belonging to seismic events. 
 
The S transform based denoising 
The S-transform (Stockwell et al, 1996) is a method that 
localizes the spectrum in the time-frequency domain. It is a 
generalization of the short-time Fourier transform, but with 
a Gaussian window whose width scales inversely, and 
whose height scales linearly, with the frequency. 
The S-transform of the signal x(t) is defined as: 
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Where t is the time, f the frequency and τ controls the 
position of the Gaussian window along the time axis. 
One important property of the S transform is that the signal 
x(t) is exactly recoverable from its transform S(τ,f). Simon 
et al. (2007) showed that the inverse S transform of the 
filtered data should be calculated using the following 
equation in order to avoid the creation of artifacts: 
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Another important property of the S transform is its 
linearity, that for the case of additive noise to the signal the 
data can be modeled as data(t) = signal(t) + noise(t) thus 
the S transform can be written  as: 
 

S{data(t)} = S{signal(t)}+ S{noise{t)}. 
 
The calculation of the S transform of the signal is the first 
step in denoising. In order to minimize the effect of the 
noise in the signal, the Otsu’s method is used to separate  
the areas of the S transform dominated by the high energy 
of the signal and the noisy areas. Then, based on this 
clustering, a filter is designed and smoothed, which is then 
applied on the S transform. Next, the filtered data in the 
time-frequency domain are back transformed to the time 
domain and we continue with the next step of the 
processing. 
 
P-phase picking using the Kurtosis - criterion 
Since we have already detected and denoised the segments 
of the record that include seismic information, we can 
estimate the P-phase arrival time using higher order 
statistics (HOS) (Nikias and Petropulu, 1993) and 
specifically the kurtosis criterion (Saragiotis et al, 2002). 
Kurtosis, the zero-lag, fourth order cumulant of a N-

sample, real and zero–mean process { })(kX , is a 

measure of the heaviness of the tails of its distribution. The 
estimator of the kurtosis used in this research is: 
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where xm̂  and xσ̂  are the estimates of the mean and 

standard deviation of { })(kX  respectively. Since kurtosis 

provides a measure of heaviness of the tails, we take 
advantage of the fact that outliers, such as seismic events, 
have high values and appear in the tails of the distribution. 
As these tails become heavier, kurtosis assumes high values 

and therefore presents maxima in the neighborhood of the 
P-arrival. To avoid large delays on the estimation of P 
onset time we evaluate the maximum slope and not the 
maximum value of the HOS parameter curve. This is due to 
the fact that the maximum value of this parameter is 
reached only when a sufficient fraction of the time window 
used contains the seismic signal, which is beyond the P-
arrival. The stages of the proposed are presented in Figure 
1. 
 

 
Application on synthetic data 
 
First, we test the proposed method to synthetic data. The 
synthetic seismograms are constructed by the following 
procedure: Initially Gaussian noise is filtered with a Park’s 
– Mc Clellan optimal equiripple FIR filter. Next the signal 
is multiplied by a negative exponential function in order to 
simulate the effect of the attenuation of P- and S- coda 
(Figure 2).  

 

 
 

Figure 1:  Flow chart of the stages of the proposed method. 
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To control the signal to noise ratio (SNR) of the signal, a 
window with real noise from a seismic record is added. The 
synthetic event is scaled according to the amplitudes of the 
noise in order to achive the desired SNRs. The chi-squared 
based test statistic is applied to verify the existence of the 
event (Figure 3). The test has shown that it can detect the 
event sufficiently well.  
 

 
The next step is to calculate the S transform. Using the 
Otsu’s thresholding method both to the real and the 
imaginary part of the transform, the filter is designed and 
applied. Finally, the first arrival is automatically picked 
using the kurtosis criterion.  
In Figure 4 the effect of the S-transform filtering can be 
seen on the synthetic seismogram at Figure 3. Figure 4a,b 
shows the automatic picking results using the kurtosis 
criterion to the unfiltered and the filtered seismogram 
respectivelly.  
 

 
The signal is sufficiently cleared around the area of the first 
break. The end of the event is more attenuated but since the 
interest in this case is the first arrivals this is not a 
significant problem. 
In comparison to the actuall pick we can see that the 
picking accuracy for the filtered signal is improved 
compared to the noisy one. An additional advantage of the 
proposed method is that the applied processes do not alter 
the P-pulse arrival. 
 
Application on real data 
 
In this section we test the proposed methodology on real 
data. A continuous record of 10 minutes is selected and the 
chi-squared based test apllied (Figure 5). All the events in 
this record were succesfully detected. From the detected 
events we select one with low SNR. Similarly as in the case 
of the synthetic data, the S transform is calculated and the 
event is filtered by the designed filter based on the Otsu’s 
method thresholding (Figure 6). Finaly the first arrival is 
automaticaly picked using the kurtosis criterion. 
 
Figure 7 shows the effect of the S-transform filtering on the 
selected low SNR event. The area around the P-phase 
arrival is improved while the end of the event is attenuated. 
Figure 7a shows the automatic picking results using the 
kurtosis criterion on the unfiltered event, in contrast to 
Figure 7b where the filtering is applied and improves the 
SNR 
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Figure 2:  The noise free synthetic signal. 
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Figure 3:  The synthetic signal with  addition of noise and the 
results from the Chi squared based test’s  event detection. The red 
dots indicate the existence of seismic event, while the black
indicate seismic noise. 
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Figure 4:  (a)  Synthetic seismogram with  addition of  real seismic 
noise, (b) Filtered in  the Time – Frequency domain signal. The red 
dashed line is the automatic pick as claculated using  the kurtosis 
criterion and the black dotted line is the actual position of the first 
break arrival. 
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Conclusions 
 
We propose and apply an integrated method for seismic 
event detection, denoising and accurate P-phase picking. 
The modified Chi-squared test provides an almost free-
parameter algorithm, for the events identification. It is easy 
to implement and its performance does not depend on any 
assumptions for the seismic noise distribution. The 
denoising of the events detected by the aforementioned 
algorithm, takes place in the S-transform domain using the 
Otsu’s thresholding method. The SNR in the neighborhood 
of the P arrival can be significantly improved and this in 
term improves the automatic estimation of the accurateP-
phase arrival time using the Kurtosis criterion. In general 
this hybrid method is straightforward to implement, 
demands low computational resources and requires 
minimum user intervention. 
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Figure 5:  A section of data recording. The zoomed area shows the event 
selected to apply the propose methodology. Vectors indicate the detected 
events. and  The red dots indicates the presence of the seismic events
while the gray ones indicate seismic noise. 
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Figure 6: (a) The S transform of the selected event and (b) the 
coresponding S transform after the application of the filter. 
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Figure 7:  The event selected from (a) the real data and (b) the filtered 
in  the Time – Frequency domain. The red dashed line is the automatic 
pick as calculated using  the kurtosis criterion and the black dotted line 
is the actual position of the first break arrival. 
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